

Ultimate 1MB/Incognito/1088XEL|U1MB

BIOS Technical and Developer Documentation

By Jonathan Halliday

Fourth Edition

Revised 03/06/2021

Updated to cover firmware version 4.0

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

2

Contents
Introduction .. 4

Conventions .. 4

The BIOS Initialisation Process .. 5

Memory Usage ... 6

RAM Usage ... 6

BIOS Metadata and Jump Table ... 7

Active Configuration Record ... 8

Non-volatile system variables ... 8

Editable ROM Slot Descriptions .. 9

NVRAM Configuration Layout ...10

DS1305 User NVRAM Layout ..10

U1MB Configuration Data ..11

Incognito configuration data ..13

BIOS Plugins ..15

Plugin User RAM ...15

Plugin Structure ..16

Plugin RAM ...19

Plugin Menu Items ..19

Menu Item Structure ..19

Menu Item Types ..21

Formatted Printing ...26

Examples ...26

Initialising Menu Items ...28

Updating Menus ...32

Displaying Messages and Interacting with the User ...34

Displaying a Message ...34

Obtaining a Response from the User ...34

Testing Conditions and Probing Hardware ...36

Writing to Hardware Registers ...37

CCTL Write Example ...38

Reacting to Keyboard Input ..39

Bounds-Limiting a List Control ..39

Saving and Loading Configuration Data ..39

Identifying Your Plugin..41

PBI BIOS Extensions ..42

Testing Plugins ..43

Acknowledgements ..44

References ..45

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

3

Copyright © 2015-2021 Jonathan Halliday. All Rights Reserved. Permission is granted to redistribute this
document verbatim, providing it is done free of charge and for non-commercial purposes. All trademarks
are the property of their respective owners. While the information in this document is presumed correct,
no guarantee is provided as to its accuracy or fitness for a particular use.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

4

Introduction

This document describes the technical specifications and memory map of the “Alt” BIOS for the Ultimate
1MB and Incognito upgrades for the Atari XL/XE and 800 machines respectively. The replacement BIOS
provides a powerful alternative to the stock firmware written by Sebastian Bartkowicz (Candle), who also
designed and produced both devices. Although the new BIOS was initially written to facilitate a few niche
requirements not addressed by the original (booting the “GOS” segment of the flash ROM, setting the
RTC from the BIOS setup screen, fixing the day-of-the-week numbering discrepancy between the BIOS
and the SpartaDOS X RTC driver, adding a dedicated PBI hard disk configuration menu), several other
additional features were eventually introduced (high-speed SIO, configuration profiles, hardware
detection, diagnostic cart boot, and plug-in modules). A new PBI BIOS and XEX loader were also written.
This document deals only with the technical details of the new main BIOS, with reference to the PBI BIOS
where necessary.

For a complete and detailed reference to the Ultimate 1MB hardware, readers are encouraged to refer to
Avery Lee’s Altirra Hardware Reference Manual.

Conventions

Since this document pertains to both Ultimate and Incognito, we shall refer to the hardware as “U1MB”,
making specific reference to “Incognito” wherever the Incognito specification deviates from that of
Ultimate 1MB.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

5

The BIOS Initialisation Process

When the Atari computer is booted or reset, the U1MB or Incognito BIOS ROM is mapped at 0xC000-CFFF
and 0xD800-FFFF, and the CPU begins execution at the address pointed to by the machine Reset vector at
0xFFFC. Upon reset, the Ultimate configuration register at 0xD380 is unlocked, allowing changes to the
configuration until bit 7 of 0xD380 is set by the BIOS before control is passed to the Atari OS.

Like the original BIOS, the new BIOS reads the system configuration stored in the NVRAM of the DS1305
RTC chip at every reset and writes this configuration to the unlocked U1MB configuration registers. It also
checks whether the BIOS Setup entry hotkey is pressed, and if it is, the BIOS setup menu is entered. In the
original BIOS, the hotkey was always “Help”, but the new BIOS allows for use of the “Start” key as an
alternative.

In addition to basic configuration, the new BIOS performs a series of hardware tests following the reset
phase, depending on whether the machine is performing a warm reset or a cold boot. Certain tests (such
as CPU type and speed) are only carried out prior to entering the setup menu.

Certain quirks of the VHDL are capitalised upon by the U1MB BIOS, such as the ability to map the ROM
under 0xD000-D7FF to the Self-Test area at 0x5000. The new BIOS does this after first initialising PORTB
as an output. Incognito, meanwhile, lacks this capability, but a CPLD update allows full U1MB
compatibility and thus the use of plugins. Note that as of v.4.0, plugins have moved to the self-test ROM
area and have doubled in size (from 1KB to 2KB). Compatibility with plugins from prior versions is entirely
broken.

The v.4.0 firmware may be safely flashed to the Incognito regardless of whether the CPLD has been
updated to support plugins. Where no plugin support is found to be available (i.e. when manipulation of
PORTB bit 7 fails to map the self-test ROM at $5000), the firmware will simply ignore the plugin code.

The new U1MB BIOS also attempts to establish whether the machine is an XEGS, and if it is not, it
deactivates XEGS game ROM selection. Tests are also made for Soundboard and Stereo Pokey hardware,
and – if found – the firmware tries to discover whether the hardware is under U1MB control, greying out
Soundboard and Stereo options if the this is not the case. Unfortunately, Covox hardware is not
detectable in software, but the plugin architecture means that the Covox option can be removed if it is
not required.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

6

Memory Usage

Below is a map of ROM and RAM areas used by the U1MB and Incognito BIOS:

RAM Usage

Since the BIOS setup menu needs to be accessible without disturbing the underlying OS and applications,
RAM outside of the IO region has been carefully chosen to cause minimal disruption following system
reset. Locations used in page zero (0x30-35 and 0x38-3B) are designated for external device (PBI) use,
while VDSLST (0x0200) and VVBLKI (0x0222) are reinitialised by the OS on system reset. Usage of the
lower half of the stack – though more extensive than with the original BIOS – should not cause issues.

Address U1MB

0x30-35 Pointers

0x38-3B Pointers

0x0200 VDSLST

0x0222 VVBLKI

0x0114-01BF OS entry code and buffers

0xC000-C1FF BIOS metadata and jump table

0xC200-CFFF BIOS code

0xD000-D7FF Plugin code (executes at $5000; requires CPLD update on Incognito)

0xD800-DFFF BIOS code

0xE000-E3FF Character Set

0xE400-FAFF BIOS code

0xFF00-FFBF Editable ROM slot descriptions

0xFFC0-FFDF System ROM space descriptions

0xFFE0-FFF9 Unused

0xFFFA-FFFF Machine vectors

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

7

BIOS Metadata and Jump Table

The BIOS metadata and jump table (at the bottom of the 16KB ROM) has the following layout:

The SpartaDOS X ROM size dictates whether the GOS slot is available (i.e. if SDX is 192KB long), and
allows optional use of 256KB and 320KB SDX ROMs if the GOS is not required. Software designed for BIOS
customisation must write 0x18, 0x20 or 0x28 to the SDX ROM without changing any other part of the
BIOS header.

Address Size (bytes) Description
Defined Content

U1MB Incognito

0xC000 6
Firmware signature
(ASCII)

‘ULBIOS’ ‘INBIOS’

0xC006 1 Major revision (BCD)

0xC007 1 Minor revision (BCD)

0xC008 3
Revision date
(DD/MM/YY)

0xC00B 1
SpartaDOS X ROM Size
in 8KB banks

0x18, 0x20, or 0x28

0xC00C 2
Editable slot name base
address

0xFF00

0xC00E 2
Address of NVRAM
configuration buffer

0xC010 2 Reserved

0xC012 3
JMP to menu item
attribute setting
routine

0xC015 3
JMP to message print
routine

0xC018 3
JMP to get user
confirmation routine

0xC01B 3 JMP to list edit routine

0xC01E 3 JMP to GetVar routine

0xC021 3 JMP to SetVar routine

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

8

Active Configuration Record

A copy of the configuration data read from the active profile in NVRAM is permanently stored at 0xD100.
On U1MB systems, this data extends to 0xD10E, and on Incognito systems, the data extends to 0xD10C.
See the NVRAM Configuration Layout section for a detailed description of the contents of this area of
memory.

Non-volatile system variables

Immediately after the copy of the configuration record are a series of internal variables whose values
remain valid until changed or until the machine is shut down. Note that on the Incognito, this data begins
at 0xD10D (although this information is provided for interest only, since plugins are not supported on the
Incognito).

Address Bytes Variable Description Values

0xD110 1 PowerOnFlag Cold power-on flag Bit 7: 1 = cold power-on

0xD111 1 ColdFlag Internal cold boot flag Bit 7: 1 = cold boot

0xD112 1 LoaderBit Loader flag Bit 7: 1 = loader active

0xD113 1 MachineType Platform info Bit 0: 0 = PAL GTIA, 1 =
NTSC GTIA
Bit 1: 0 = PAL ANTIC, 1 =
NTSC ANTIC
Bit 2: 0 = XL/XE, 1 = XEGS
(U1MB only)

0xD114 1 CPUFreqMaj Processor frequency 0-99 (BCD)

0xD115 1 CPUFreqMin Processor frequency (fraction) 0-99 (BCD)

0xD116 1 Reserved Reserved byte n/a

0xD117 1 WarmFlag Partition table re-read flag Bit 7: 1 = Warmstart

0xD118 1 SIDEFlag SIDE present flag Bit 7: 1 = SIDE present

0xD119 3 Magic Magic bytes ‘FJC’

0xD11C 1 SDXFlag SDX active flag Bit 7: 1 = SDX enabled

0xD11D 1 BootDrive Boot drive number 0x00 – 0x0F

0xD11E 1 BASICDisableFlag BASIC disable flag Bit 7: 1 = BASIC off

0xD11F 1 PluginFlag Plugin support/present flag Bit 7: 1 = plugin enabled

0xD120 4 PluginRAM Reset-proof plugin RAM Plugin-defined

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

9

Editable ROM Slot Descriptions

Editable ROM slot descriptions are encoded in a completely different manner to those found in the
original BIOS. In the standard firmware, slot descriptions were fourteen bytes long (fifteen bytes in
Incognito) and encoded using Antic display codes rather than ATASCII. Moreover, slot descriptions
immediately followed the slot heading (OS, BASIC, or XEGS), which was repeated four times for each slot
type. Although this repetition of the entire menu item was simply a side-effect of the BIOS menu design,
it made it possible for unrestrained editing of the slot descriptions (whether accidental or wilful) to
completely destroy the menu layout.

A limitation of the original BIOS menu only noticeable some considerable time after it was written was
that fourteen characters was insufficient to accommodate the title of the default XEGS game slot
(“Missile Command”). The description size was therefore extended to fifteen characters in the new BIOS
(matching the original Incognito description size) to remove the need for such abbreviations.

The new slot descriptions are encoded as null-terminated ATASCII strings instead of using internal screen
codes. Control, reverse video, and other special non-alphanumeric characters should not be used. Spaces
are permitted. Maximum string length is fifteen characters.

Lastly, the slot description base address is now the same in both the U1MB and Incognito firmware, and
positioned near the end of the ROM.

The U1MB ROM description fields are laid out as follows:

Incognito ROM description fields are as follows:

Address Type Address Type

0xFF00 Colleen OS slot 0 0xFF40 XL/XE OS slot 0

0xFF10 Colleen OS slot 1 0xFF50 XL/XE OS slot 1

0xFF20 Colleen OS slot 2 0xFF60 XL/XE OS slot 2

0xFF30 Colleen OS slot 3 0xFF70 XL/XE OS slot 3

Address Type Address Type

0xFF00 OS slot 0 0xFF60 BASIC slot 2

0xFF10 OS slot 1 0xFF70 BASIC slot 3

0xFF20 OS slot 2 0xFF80 XEGS slot 0

0xFF30 OS slot 3 0xFF90 XEGS slot 1

0xFF40 BASIC slot 0 0xFFA0 XEGS slot 2

0xFF50 BASIC slot 1 0xFFB0 XEGS slot 3

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

10

NVRAM Configuration Layout

The new firmware uses addresses 0x20-2F, 0x3F, and 0x40-7F of the U1MB’s SD1305’s NVRAM. The
U1MB/Incognito build of SpartaDOS X uses bytes 0x30-31. Addresses 0x50-55 are used by the XEX loader
for configuration data.

Fortunately, developers wishing to store configuration data for additional hardware may do so via BIOS
plugins (U1MB only). NVRAM space is reserved in the U1MB configuration records for exactly this
purpose.

DS1305 User NVRAM Layout

Address Description

0x20 16 Configuration profile 1

0x3F 1 Profile number (0-3)

0x40 16 Configuration profile 2

0x50 16 XEX loader configuration

0x60 16 Configuration profile 3

0x70 16 Configuration profile 4

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

11

U1MB Configuration Data

The U1MB configuration data is arranged as follows (offsets from NVRAM profile address)

Offset Bit Usage Description

0 (Cfg) 0-1 RAM size (00 = stock, 01 = 320, 10 = 576, 11 = 1088)

2-3 OS slot (0-3)

4 SDX (actually bank switching enable) (0 = on, 1 = off)

5 Unused

6 IORAM flag

7 Config lock

1 (Aux) 0 Stereo (pin M0, P4) (0 = off, 1 = on)

1 Covox (pin M1, P4) (0 = off, 1 = on)

2 Pin S0, P4 (0 = off, 1 = on)

3 Pin S1, P4 (0 = off, 1 = on)

4 VBXE address (0 = 0xD640, 1 = 0xD740)

5 VBXE disable (0 = enabled, 1 = disabled)

6 Soundboard enable/disable (0 = off, 1 = on)

7 Flash writes (0 = enabled, 1 = disabled)

2 (Aux2) 0-1 PBI device ID (00 = 0, 01 = 2, 10 = 4, 11 = 6)

2 PBI BIOS (0 = off, 1 = on)

3 SIDE button (0 = off, 1 = on)

4-5 BASIC slot (0-3)

6-7 XEGS slot (0-3)

3 (Aux3) 0-3 HDD boot partition (0 = off, 1-15 = drive number)

4 Use boot partition in partition table header (0 = off, 1 = on)

5-6 SIO device selection (0 = D1-D4, 1 = Disks+PCLink, 2 = All)

7 HDD (0 = off, 1 = on)

4 (Aux4) 0-3 SIO flags (bit 0 = drive 1, ... bit 3 = drive 4)

4-5 SIO mode (0 = off, 1 = HSIO, 2 = SIO2BT, 3 = HSIO+SIO2BT)

6-7 HDD write lock (0 = disabled, 1 = physical disk, 2 = global)

5 (Aux5) 0 BIOS menu hotkey (0 = Help, 1 = Start)

1 Key click (0 = off, 1 = on)

2 Reboot hotkey (0 = disabled, 1 = Select)

3 PBI BIOS partition table re-read hotkey (0 = disabled, 1 = Shift)

4 Reserved

5 PBI BIOS version message (0 = off, 1 = on)

6 Boot to loader (0 = off, 1 = on)

7 GOS (0 = off, 1 = on)

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

12

Offset Bit usage Description

6 (Aux6) 0-3 Menu colour (0-15)

4 Joystick (0 = port 1, 1 = port 2)

5 Joystick disable (1 = disabled, 0 = enabled)

6 5-minute screen timeout (0 = disabled, 1 = enabled)

7 D1: Redirect (0 = disabled, 1 = enabled)

7 (Aux7) 0-3 CONFIG.SYS drive (0 = disabled, 1-15 = drive number)

4 “Z:” CIO Handler (0 = disabled, 1 = enabled)

5 Internal BASIC default (0 = OS default, 1 = disabled)

6-7 IO Noise (0 = SIO, 2 = ATR+SIO, 3 = HDD+ATR+SIO, 4 = off)

8 (Aux8) 0-5 Reserved

 6-7 BIOS logo setting (0 = every boot, 1 = off, 2 = power on)

9 (Ext ID) 0-7 8-bit extension module ID

10-14 (Ext1-5) 0-39 40 bits of extension configuration

15 Checksum 0-7 16-bit CRC of configuration profile

The MADS struct declaration for the U1MB configuration buffer looks like this:

 .struct Cfg

Config .byte ; SDX, OS, RAM

Aux .byte ; VBXE, Covox, Stereo

Aux2 .byte ; XEGS, BASIC, SIDE, PBI ID

Aux3 .byte ; HDD options

Aux4 .byte ; HSIO options

Aux5 .byte ; Misc options

Aux6 .byte ; Misc options

Aux7 .byte ; Misc options

Aux8 .byte ; Misc options

ExtID .byte

Ext1 .byte ; Extension bits

Ext2 .byte ; Extension bits

Ext3 .byte ; Extension bits

Ext4 .byte ; Extension bits

Ext5 .byte ; Extension bits

CRC .byte ; 8-bit config checksum

 .ends

The struct tags should be used to refer to the encoding address of plugin configuration data (see section
on Plugins).

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

13

Incognito configuration data

Offset Bit usage Description

0 (Hardware) 0-3 CONFIG.SYS drive (0 = disabled, 1-15 = drive number)

4 Internal BASIC default (0 = OS default, 1 = disabled)

5 Colleen mode (0 = off, 1 = on)

6 EXTSEL mode (0 = PBI, 1 = Colleen; plugin JED only)

7 Reserved

1 (Colleen Cfg) 0-1 RAM size (0-3)

2-3 OS (0-3)

4 SDX (0 = on, 1 = off)

5 Unused

6-7 BIOS logo setting (0 = every boot, 1 = off, 2 = power on)

2 (Colleen Aux) 0-1 IO Noise (0 = SIO, 2 = ATR+SIO, 3 = HDD+ATR+SIO, 4 = off)

2 SIDE (0 = off, 1 = on)

3 Axlon (0 = off, 1 = on)

4 BASIC (0 = off, 1 = on)

5 Unused

6 “Z:” CIO Handler (0 = disabled, 1 = enabled)
7 Unused

3 (XL/XE Cfg) 0-1 RAM size (0-3)

2-3 OS (0-3)

4 SDX (0 = on, 1 = off)

5-7 unused

4 (XL/XE Aux) 0-1 PBI Device ID (0 - 3)

2 PBI BIOS (0 = off, 1 = on)

3 Unused

4 Joysticks 3-4 (0 = off, 1 = on)

5 Unused

6 Loader (0 = off, 1 = on)

7 Unused

5 (Aux3) 0-3 HDD boot partition (0 = off, 1-15 = drive number)

4 Use boot partition in partition table header (0 = off, 1 = on)

5-6 SIO device selection (0 = D1-D4, 1 = Disks+PCLink, 2 = All)

7 HDD (0 = off, 1 = on)

6 (Aux4) 0-3 SIO flags (bit 0 = drive 1, ..., bit 3 = drive 4)

4-5 SIO mode (0 = off, 1 = HSIO, 2 = SIO2BT, 3 = HSIO+SIO2BT)

6-7 HDD write lock (0 = disabled, 1 = physical disk, 2 = global)

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

14

Offset Bit usage Description

7 (Aux5) 0 BIOS menu hotkey (0 = Help, 1 = Start)

1 Key click (0 = off, 1 = on)

2 Reboot hotkey (0 = disabled, 1 = Select)

3 PBI BIOS partition table re-read hotkey (0 = disabled, 1 = Shift)

4 Reserved

5 PBI BIOS version message (0 = off, 1 = on)

6 Boot to loader (0 = off, 1 = on)

7 GOS (0 = off, 1 = on)

8 (Aux6) 0-3 Menu colour (0-15)

4 Joystick (0 = port 1, 1 = port 2)

5 Joystick disable (1 = disabled, 0 = enabled)

6 5-minute screen timeout (0 = disabled, 1 = enabled)

7 D1: Redirect (0 = disabled, 1 = enabled)

9 (Ext ID) 0-7 8-bit extension module ID

10-14 (Ext1-5) 0-39 40 bits of extension configuration

15 Checksum 0-7 16-bit CRC of configuration profile

The MADS struct declaration for the Incognito configuration buffer looks like this:

 .struct Cfg

Hardware .byte ; type (800 or XL/XE)

ColleenConfig .byte ; OS, RAM, SDX (Colleen)

Aux .byte ; SIDE (Colleen)

Config .byte ; OS, RAM, SDX

Aux2 .byte ; SIDE, controllers 3-4

Aux3 .byte ; XL/XE HDD options

Aux4 .byte ; HSIO options

Aux5 .byte ; misc options

Aux6 .byte ; misc options

ExtID .byte

Ext1 .byte ; Extension bits

Ext2 .byte ; Extension bits

Ext3 .byte ; Exiension bits

Ext4 .byte ; Extension bits

Ext5 .byte ; Extension bits

CRC .byte ; config checksum

 .ends

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

15

BIOS Plugins

Version 4.0 of the BIOS supports 2KB plugin modules assembled at 0x$5000-$57FF (i.e. the XL/XE self-test
ROM). Plugins may be inserted into the BIOS ROM image at file offset 0x1000 using a suitable editing
tool, or flashed directly to the target system using UFLASH. As well as providing support for diverse
hardware controlled by the U1MB P2 header signals, plugins may also store information in the NVRAM
for retrieval by hardware without a software configuration system of its own. Plugins also allow tailoring
of the firmware to the target machine (via the absence of features pertaining to hardware which is not
present on the host computer).

Plugins perform a limited set of tasks. They can:

• Define editable menu items in any of the eight BIOS setup menus

• Provide a custom title for the ‘Device Control’ menu

• Save and retrieve state of said menu items in the U1MB NVRAM

• Activate, deactivate (‘grey out’) and temporarily disable newly defined menu items

• Establish whether a specific hardware device is controlled by U1MB via the Aux signals

• Toggle the state of a hardware device controlled by Aux signals

• Write to hardware registers on System Reset

• Transfer configuration data to and from a specific device when the user saves the BIOS
configuration

The default U1MB plugin adds stereo POKEY and VBXE selections to the ‘System Clock and Features’
menu and defines three stub toggle settings on the ‘Device control’ menu, corresponding to the M1, S0,
and S1 signals on the U1MB. In addition, it adds ‘Audio Hardware’ and ‘VBXE core’ entries to the ‘System
Information’ page.

Further levels of hardware control may be achieved by placing configuration data into the
U1MB/Incognito NVRAM and extracting said information via the firmware of the target hardware. The
PokeyMAX plugin does exactly this, and thus allows four PokeyMAX configuration profiles, even when
using the version of PokeyMAX which has no user accessible NVRAM or EPROM memory of its own.
Conversely, the Sophia 2 plugin saves user settings on the EPROM of the Sophia itself. Thus, although all
four U1MB/Incognito profiles present the exact same single set of Sophia settings, said settings consume
none of the U1MB/Incognito NVRAM. All settings are stored in the Sophia’s EPROM.

Plugin User RAM

Naturally a plugin requires some RAM for the storage of internal variables. 32 bytes of RAM (0xD7E0-
D7FF) are reserved for this purpose, and their contents will remain valid until the user leaves the BIOS
setup menu. The supplied header file includes symbolic references for this range of addresses (‘Plugin0’
through ‘Plugin31’).

In addition, four ‘reset proof’ RAM locations at 0xD120-3 are provided. These locations will retain their
contents from power-up to power-down.

If indirect zero-page addressing is required, locations 0x38, 0x39, 0x3A and 0x3B may be used. Note,
however, that these locations are volatile and will be overwritten outside of the scope of the plugin
function in which they are used.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

16

Plugin Structure

BIOS plugins begin with a 80-byte metadata header arranged thus:

Address Offset Size
(Bytes)

Description Content

U1MB Incognito

0x5000 0x0000 8 Plugin signature (8 ATASCII bytes) ‘ULPLUGIN’ ‘INPLUGIN’

0x5008 0x0008 1 Host BIOS minimum major revision number
(BCD)

0x5009 0x0009 1 Host BIOS minimum minor revision number
(BCD)

0x500A 0x000A 2 Reserved

0x500C 0x000A 16 Mnemonic plugin ID (null-terminated, up to
16 bytes including termination)

0x501C 0x001C 1 Plugin major revision number (BCD)

0x501D 0x001D 1 Plugin minor revision number (BCD)

0x501E 0x001E 1 Plugin Revision Day (BCD)

0x501F 0x001F 1 Plugin Revision Month (BCD)

0x5020 0x0020 1 Plugin Revision Year (BCD)

0x5021 0x0021 2 Pointer to menu setup routine

0x5023 0x0023 2 Pointer to menu update routine

0x5025 0x0025 2 Pointer to hardware test routine

0x5027 0x0027 2 Pointer to hardware setup routine

0x5029 0x0029 2 Pointer to default settings routine

0x502B 0x002B 2 Pointer to keyboard handler

0x502D 0x002D 2 Pointer to list control update handler

0x502F 0x002E 2 Pointer to configuration load function

0x5031 0x0031 2 Pointer to configuration save function

0x5033 0x0033 1 Reserved byte

0x5034 0x0034 32 Menu title (null-terminated ATASCII string)

0x5050 0x0050 - First node of plugin menu structure

Plugin Signature

Plugin modules must begin with the 8-byte string 'ULPLUGIN' in order to be recognized by the flashing
tool.

Host BIOS revision number

This is the lowest BIOS revision guaranteed to work with the plugin. As of firmware version 3.00, only the
major revision number needs to match that of the host BIOS, since public equates are guaranteed not to
change in minor revisions. For example: plugins for firmware 2.xx must not be used with firmware 3.xx,
and vice versa, but a plugin which stipulates host firmware version 3.00 should work with firmware 3.00
through 3.99.

Mnemonic Plugin ID

This is a descriptive signature. The default plugin ID is ‘SC’ (denoting Stereo/Covox). This ID is written to
the plugin ID field of both NVRAM profiles (see NVRAM data description). Dependent hardware may
therefore check that the currently active BIOS plugin is of the expected type. For example, the custom
KMK/JZ BIOS discussed earlier checks for the ‘IS’ (IDEa/Stereo) plugin ID before deriving its configuration

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

17

data from the plugin configuration bits in NVRAM. If the plugin ID is not of the expected value, then the
target hardware should ignore the plugin configuration bits.

As of BIOS 1.36, plugin configuration bits in NVRAM are automatically cleared if the BIOS discovers during
the boot process that the plugin ID in NVRAM does not match the ID in the BIOS ROM. This can happen
whenever a BIOS with a different plugin is flashed to ROM, or when a plugin module is merged into an
existing BIOS. This check guarantees that plugin configuration data is zeroed (and therefore not out of
bounds) the first time a new plugin becomes active.

Plugin Name

The plugin name describes the general purpose of the plugin. For example, the default plugin name is
‘Stereo/Covox’. The name should be null-terminated and should not exceed 16 bytes (including
terminator).

Plugin Revision Date

The plugin revision date is stored as three BCD numbers (DD/MM/YY).

Pointer to Menu Setup Routine

This is a 16-bit pointer to the code which sets up the initial state of the ‘Device Control’ menu (although
this menu may be re-titled by the plugin). Setting up the menu involves enabling and dimming or
disabling menu items depending on the discovered hardware and whether said hardware can be
successfully controlled by U1MB P2 header signals. The source to the default plugin and the KMK/JZ IDEa
plugin are provided with this documentation. If the menu setup routine is not defined, a NULL pointer
should be supplied, or the address provided should point to an RTS instruction.

Pointer to Menu Update Routine

This is a 16-bit pointer to code which runs immediately after the user changes any option or chooses an
actionable menu item. The code runs before the subsequent screen redraw, so this is the section of code
you use to dim or enable menu items or change other settings in response to user action. If the menu
update routine is not defined, a NULL pointer should be supplied, or the address provided should point to
an RTS instruction.

Pointer to Hardware Test Routine

This is the address of the plugin code which tests for the presence of target hardware and (optionally)
establishes whether the hardware is under software control via on the P2 signals. In the case of the
default plugin (Stereo/Covox), this routine attempts to detect Stereo Pokey after first setting M0 to 0 and
then again after setting M0 to 1. If stereo is detected in neither case, it is assumed that Stereo hardware
is not present. If stereo is detected in both cases, it is assumed that stereo hardware is present but is not
under software control. If stereo is detected only after M0 is set to 1, it is assumed that stereo hardware
is present and that it is under software control.

The plugin should set a flag (in plugin RAM – see the subsequent ‘Plugin RAM’ section) to tell the menu
initialisation routine whether relevant items should be dimmed (if software control is not possible), or
placed in an ‘always on’ or ‘always off state’, depending on whether the hardware was actually detected.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

18

Pointer to Hardware Setup Routine

This is the address of the plugin code which writes to hardware registers after the user leaves BIOS setup
and when the system Reset key is pressed. If the target hardware was controlled by – for example – a
register in the IO area, the hardware setup routine would write to this register, reflecting the selections
the user made while in setup.

Pointer to Default Settings Routine

New to version 3.0, this is the address of the code which is called whenever the BIOS needs to reset the
plugin using its default values. The routine will be called:

1. Whenever the current profile’s plugin signature does not match the signature of the installed
plugin

2. Whenever the user elects to reset all settings in the current profile to default values

Your ‘default settings’ routine should zero or otherwise set all bits in the current configuration profile
which are managed by the plugin. You can write values directly to the configuration bitfields by loading
said value into the A register and calling pSetValue.

Pointer to Keyboard Handler

New to version 3.0, this is the address of the code which is called whenever the BIOS receives a keystroke
not handled by the internal menu system. The routine will be called with the internal key code in the A
register, and the handler should set the carry flag on exit if a full menu redraw is required.

Pointer to List Update Handler

New to version 4.0, this is the address of the code which is called whenever the user opens a list item.
The purpose of this callback is to dynamically limit the start and end items in a list depending on external
criteria. The address of the currently open list item is passed in X,Y; the handler should check if this word
points to the list item of interest, and if it does, set the bounds for the list by loading the lowest item
index into the X register and the highest allowable item plus 1 into the Y register, and calling pSetBounds.

As an example, here is the list handler from the PokeyMAX plugin:

.proc ListUpdate

.ifdef PokeyMAX

cpxy #ItemPokey

bne Done

lda PokeyMAXFeatures

and #2 ; do we have quad pokey?

bne Done ; if so, do nothing, since all list items are valid

ldx #0

ldy #2

jsr pSetBounds

Done

.endif

rts

.endp

The list control contains three items (‘Mono’, ‘Stereo’, and ‘Quad’) and is – like the entire menu structure
– encoded in ROM. In this case, if Quad POKEY is not available, the third list item (that with index 2) is
rendered inaccessible.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

19

Pointer to Configuration Load Function

New to version 4.0, this is a pointer to the plugin’s configuration load function. A function may thus
register as a callback which is executed every time a configuration is loaded by the firmware. The Sophia
2 plugin uses this facility to read configuration data directly from the Sophia’s EPROM.

Pointer to Configuration Save Function

New to version 4.0, this is a pointer to the plugin’s configuration save function. A function may thus
register as a callback which is executed every time a configuration is written by the firmware. The Sophia
2 plugin uses this facility to write configuration data directly to the Sophia’s EPROM.

Menu Title

This is a null-terminated string of not more than 31 characters (including termination byte) which will be
displayed as the title of the ‘Device Control’ menu. For example, the KMK/JZ plugin titles the menu ‘IDEa
APT Hard Disk’.

Plugin RAM

Sixteen bytes of IO RAM at 0xD7E0-D7FF are set aside exclusively for a plugin’s internal use. Note that the
RAM is volatile and is cleared when the user leaves the BIOS setup menu.

An additional four bytes of ‘reset proof’ plugin RAM are available at $D120-D123. Values written here will
survive reset and remain intact until power-off.

Plugin Menu Items

The menu structure of the BIOS setup menu is designed to be extensible. The menus are arranged as a
single forward linked list whose tail points to the location of the first node of the plugin’s menu structure.
Therefore, a plugin must contain at least one menu item, and the last menu item’s ‘next node’ pointer
should be NUL. However, since a plugin with conditional assembly sections may not always know the
name of a forward-referenced node, one may also terminate the menu list with a node whose menu
number value has bit 7 set.

Because menu items are not stored ‘in order’ and instead include a field describing which menu the item
should appear in, plugins may add items to any of the eight menus in the BIOS setup utility. Most
commonly, however, plugins will add items to the ‘Device Control’ menu (numbered 4, since menus are
numbered 0 through 7), although it is possible to add extra items to any menu. When the user moves
between menus, the entire menu list is scanned and a sub-list built of all the items which appear in the
menu which is about to be opened. Menus may contain no more than twenty items (menus with more
than ten items will scroll). Menu items which overrun this quota will be ignored.

As a side-note, on the Incognito, the list-based menu structure makes switching between the two
hardware platforms (Colleen and XL/XE) very easy indeed from a coding perspective. The list head pointer
is simply switched between a list of Colleen menu items and a list of XL/XE menu items, and the last node
of both these lists points to the first menu item common to both hardware types.

Menu Item Structure

This is the MADS STRUCT declaration for a BIOS menu item:

.struct Item

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

20

 Menu .byte ; number of menu to which the item belongs

 Next .word ; pointer to next menu item (NULL = no more items)

 Title .word ; pointer to menu item heading

 Type .byte ; item type

 CfgOff .byte ; byte offset into config buffer

CfgMask .byte ; config buffer bitmask

.ends

A second, more concise, type is provided for ‘actionable’ items (i.e. items which result in immediate

action and have no associated setting).

.struct ActionItem

 Menu .byte ; number of menu to which the item belongs

 Next .word ; pointer to next menu item (NULL = no more items)

 Title .word ; pointer to menu item string

 Type .byte ; item type

 Value .word ; address of called function less 1

.ends

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

21

A description of fields follows.

Menu

Number of menu in which item appears (0-7; if you add items to the Device Control menu, use 6).

Next

Pointer to next menu item (NULL for end of list).

Title

Pointer to menu item heading (NUL-terminated string).

Type

Menu item type (see Menu Item Types below).

CfgOff

Configuration offset, i.e. byte offset into configuration buffer where the setting’s value is encoded. See
section on U1MB Configuration data for a list of offsets. There are five bytes (40 bits) of NVRAM reserved
for plugin configuration use.

CgfMask

Bitmask describing the position and bit-width of the item value when encoded in the NVRAM
configuration byte pointed to by CfgOff.

Value

For the ‘ActionItem’ type only, this is a pointer to the address of the called function, -1.

Menu Item Types

Below is the MADS declaration of enumerated types of menu items:

.enum ItemType

 Action ; item runs code

 OnOff ; toggle (0 = Disabled, 1 = Enabled)

 OnOffXOR ; toggle (bit logic reversed)

 List ; list of strings

 ToggleList ; list comprising only two items (binary list)

DriveNum ; drive number spinner (0 = Off, 1-15 = D1:-DO:)

 PartNum ; drive number spinner + 16 = "APT setting” (FDISK value)

 Date ; three 8-bit ints

 Time ; three 8-bit ints

 Spinner ; numeric spinner

 String ; string

.ende

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

22

A description of types follows.

Action

This menu item jumps to the address pointed to by the Value field plus one (by pushing the address onto
the stack and then executing an RTS instruction) when the user presses Return. CfgOff and CfgMask are
ignored. For example:

 .proc Item40

@ dta ActionItem[0] (6,Item41,Title,ItemType.Action,LaunchLoader-1)

Title

 .byte 'SIDE Loader',0

 .endp

The code above defines a menu item called ‘SIDE Loader’ which runs code pointed to by LaunchLoader-1
when the user presses Enter. The menu item will appear in menu 7, and the next item in the list is
Item41.

Note that structure ‘ActionItem’ is also employed here, since it omits superfluous arguments not required
by the ‘Action’ type. You should also use the ‘ActionItem’ structure for strings.

OnOff

This type of menu item simply toggles Value between 0 and 1 and displays ‘Disabled’ when the value is 0
and ‘Enabled’ if the value is 1. For example:

 .proc StereoToggle

@ dta Item[0] (1,Next,Title,ItemType.OnOff,ConfigBuf[0].Aux,$01)

Title

 .byte 'Stereo POKEY',0

Next

 .endp

In this example, item StereoToggle defines an item in menu 1 with an on/off state. The on/off state is
encoded in bit 0 of ConfigBuf[0].Aux and is 1 bit wide (therefore holding the value 0 or 1). The item
heading is ‘Stereo Pokey’. In this case, because of conditional assembly, we don’t necessarily know the
name of the next menu item in the list, so we merely point to the next node via a reference to ‘Next’,
which is a label at the end of the structure.

OnOffXOR

This type is identical to OnOff with the exception that the logic is reversed (i.e. 1 = Disabled, 0 = Enabled).
Example:

 .proc ItemBtn

@ dta Item[0] (2,ItemSIO,Title,ItemType.OnOffXOR,ConfigBuf[0].Aux2,$08)

Title

 .byte 'ATR swap button',0

 .endp

In this example, ItemBtn defines an on/off item in menu 2 with reverse binary logic. 0 or 1 is encoded in
bit 3 of ConfigBuf[0].Aux2. The item title is ‘ATR swap button’.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

23

List

This item type defines a list, and the index to the selected item will be placed in Value. Example:

 .proc Item1

@ dta Item[0] (0,Item2,Title,ItemType.List,ConfigBuf[0].Config,0x03)

 .byte 4

 .word List1

 .word List2

 .word List3

 .word List4

Title

 .byte 'Extended RAM',0

List1

 .byte 'Stock',0

List2

 .byte '320KB RAMBO',0

List3

 .byte '576KB CompyShop',0

List4

 .byte '1088KB RAMBO',0

 .endp

Here, a four-element list is defined in menu 0. The number of list items immediately follows the item
declaration, and following that is a list of pointers to strings, one string per list item. Since the index
ranges from 0 to 3, two bits are required. The value is encoded in bits 0-1 of ConfigBuf[0].Config.

If bit 7 of the item type is set (i.e. 0x80 is added to ItemType.List), then the list elements are displayed as
plain, unformatted strings. The user-editable OS and BASIC lists are rendered in this way to avoid
problems caused by stray ‘%’ symbols in the strings.

ToggleList

This item type defines a list comprising only two items. The reason for this item type is to distinguish
between multi-item lists and those with only a binary state. A list item with more than two items is modal
in order to allow a callback to run when the user has finalised their selection with the RETURN key, but
the ‘ToggleList’ type allows for a non-modal list.

 .proc Item1

@ dta Item[0] (0,Item2,Title,ItemType.ToggleList,ConfigBuf[0].Config,0x03)

 .byte 2 ; note: the list item count is ignored, but MUST be present

 .word List1

 .word List2

Title

 .byte 'VBXE Address',0

List1

 .byte '0xD640',0

List2

 .byte '0xD740',0

.endp

Note that although the list item count is superfluous, it still must be supplied. The value will be ignored.
The toggle list control appears to the user as a toggle option, but with software defined options (instead
of 'Enabled' and 'Disabled').

DriveNum

The DriveNum item type implicitly declares a list comprising sixteen elements. Element 0 maps to ‘off’,
while values 1-15 equate to and display drive specifiers D1: through DO: (drive 15). Example:

 .proc Item49

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

24

@ dta Item[0] (5,Item50,Title,ItemType.DriveNum,ConfigBuf[0].Ext1,0x0F)

Title

 .byte 'Boot partition',0

 .endp

Here, value 0-15 is encoded in bits 0-3 or ConfigBuf[0].Ext1.

PartNum

Identical to DriveNum but using one extra value (16) which denotes ‘On disk’. Example:

 .proc Item49

@ dta Item[0] (5,Item50,Title,ItemType.PartNum,ConfigBuf[0].Ext1,0x1F)

Title

 .byte 'Boot partition',0

 .endp

Note that the encoded value requires 5 bits.

Date

For internal use only, this type presents a means of adjusting the system data and is therefore unlikely to
be used in plugin code (since the BIOS already uses the same item type in menu 1). Example:

 .proc Item7

@ dta Item[0] (1,Item8,Title,ItemType.Date,0,0)

Title

 .byte 'System Date',0

.endp

Note that the encoding/decoding of the RTC is handled internally, so no configuration buffer or mask are
required (and if supplied, they will be ignored).

Time

Similar to the Date type, but for time of day adjustment.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

25

Spinner

This item type presents a numeric (decimal, 0-99) value within a specified range through which the user
may ‘spin’ forwards and backwards in single unit increments and decrements. Example:

 .proc Item37

@ dta Item[0] (4,ItemClick,Title,ItemType.Spinner,ConfigBuf[0].Aux6,0x0F)

 .byte 0x00 ; minimum value

 .byte 0x0F ; maximum value

Title

 .byte 'Colour',0

 .endp

In this example, the minimum value is 0 and the maximum value 0x0F (15). The value therefore occupies
4 bits and is in this case encoded in bits 0-3 of ConfigBuf[0].Aux6.

The maximum value of 99 is a consequence of the value being internally converted to BCD before being
displayed. If you need to represent values higher than 99, use a list control.

String

The string type simply writes a string to the menu and performs no further action. It is used extensively in
the system information menu. Example:

 .proc Item25

@ dta ActionItem[0] (3,Item26,Title,ItemType.String,txtBIOSVersion)

Title

 .byte 'BIOS version',0

txtBIOSVersion

 .byte '%x.%02x',0

 .word Version.Maj,Version.Min

 .endp

Note the use of the ‘ActionItem’ structure here, since the additional arguments of the ‘Item’ structure are
redundant here.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

26

Formatted Printing

As can be seen from some of the prior examples, literal strings may contain formatted output. The BIOS
setup tool’s internal printf function is similar to that found in most C implementations, albeit somewhat
simplified and with a reduced selection of output options. Formatting directives appearing in the string
should have a corresponding 16-bit pointer (word) appearing immediately after the null terminator of the
string. If there are several formatting directives in the string, each must have a corresponding data
pointer.

Formatting directives take the following format:

%[width]type

Width is an optional decimal number which describes the field width, while Type is one of the following:

Note that output is always right justified if the field width is specified, otherwise output is left justified.

Examples

The following are examples of formatted output, derived from the actual BIOS source code.

Pointer (%p)

 lda Config.BIOSKey

 asl

 tax

 lda BIOSKeyTable,x

 sta Num1

 lda BIOSKeyTable+1,x

 sta Num1+1

 jsr pMessage

 .byte 'Press %p for Setup',0

 .word Num1 ; pointer to string

 rts

Note: The printf function is described later in this document.

Character (%c) and String (%s)

 .proc Item43

@ dta ActionItem[0] (7,Item44,Title,ItemType.Action,SaveSettings-1)

Title

 .byte '%s %16c[S]',0

 .word txtSaveChanges,SpaceChar

 .endp

txtSaveChanges

 .byte 'Save changes',0

Character Data type

c Character

p Pointer to string

s String

x 8-bit Hex (or BCD) value

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

27

SpaceChar

 .byte $20

Note that string formatting is not recursive, so in the example above, txtSaveChanges may not itself
contain more formatted output directives. In the example, note also that the actual text of
txtSaveChanges appears in several different menu items, and that it is included in the parent strings by
means of the %s directive as a method of primitive string tokenisation (i.e. only a single example of the
substring common to all the ‘parent’ strings exists).

Hex/BCD (%x)

 .proc Item27

@ dta Item[0] (5,ItemVideo,Title,ItemType.List,MachineType,$c0)

 .byte 3

 .word List1

 .word List2

 .word List3

Title .byte 'Processor',0

 .ifdef Incognito

List1 .byte '6502 %x.%xMHz',0

 .else

List1 .byte '6502C %x.%xMHz',0

 .endif

 .word CPUFreqMaj,CPUFreqMin

List2 .byte '65C02 %x.%xMHz',0

 .word CPUFreqMaj,CPUFreqMin

List3 .byte '65C816 %x.%xMHz',0

 .word CPUFreqMaj,CPUFreqMin

 .endp

Here, CPUFreqMaj and CPUFreqMin have been pre-initialised as BCD values.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

28

Initialising Menu Items

Menu items appear active and editable when their containing menu is opened, and their values will be
retrieved from and saved to NVRAM. But what about menu items which need to be dimmed or disabled
depending on discovered hardware or the state of some other setting? Fortunately – as well as being able
to probe hardware registers – plugins can run code prior to their menu items being displayed and can
react to user edits. For example: if your plugin includes a menu item which sets the boot partition of the
hard disk, you would likely want the boot partition setting to be greyed out if the user completely
disabled the hard disk, and enabled again when the hard disk was reactivated.

For example:

PluginMenu

 .proc StereoToggle

@ dta Item[0] (1,CovoxToggle,Title,ItemType.OnOff,ConfigBuf[0].Aux,0x01)

Title

 .byte 'Stereo Pokey',0

.endp

 .proc CovoxToggle

@ dta Item[0] (1,Device3Toggle,Title,ItemType.OnOff,ConfigBuf[0].Aux,0x02)

Title

 .byte 'Covox',0

.endp

 .proc Device3Toggle

@ dta Item[0] (5,Device4Toggle,Title,ItemType.OnOff,ConfigBuf[0].Aux,0x04)

Title

 .byte 'Device 2',0

 .endp

 .proc Device4Toggle

@ dta Item[0] (5,SysInfoStereo,Title,ItemType.OnOff,ConfigBuf[0].Aux,0x08)

Title

 .byte 'Device 3',0

 .endp

 .proc SysInfoStereo

@ dta Item[0] (3,0,Title,ItemType.List,StereoPokeyFlag,$01)

 .byte 2

 .word List1

 .word List2

Title .byte 'Audio hardware',0

List1 .byte 'Mono',0

List2 .byte 'Stereo',0

 .endp

The list comprises a Stereo Pokey enable/disable item, Covox enable/disable, two place holder items for
the remaining two pins of P2, and an entry which will appear at the foot of the System Information menu.
Before any of the items are displayed, we need to:

1. Establish whether Stereo Pokey under software control and grey out the stereo on/off option if
not.

2. Grey out the item in the System Information screen (since no items there are ever selectable)

To initialise menu items, place the address of your setup routine at 0x501E (offset 0x001E in the plugin
file header). Below is an example of a populated header from the default plugin:

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

29

 .byte 'ULPLUGIN' ; plugin signature (8 bytes)

 .byte $03,$16 ; host BIOS version (major, minor)

 .word $0000 ; reserved

 .byte 'EP' ; example plugin

 .byte 0 ; string termination

 org PluginAddress+28

 .byte $01,$01 ; plugin version (major, minor, BCD) (2 bytes)

 .byte $02,$01,$21 ; revision date

 .word Init ; pointer to menu setup routine (called on BIOS setup entry)

 .word UpdateMenu ; pointer to menu update routine (called after every

menu edit)

 .word HardwareTest ; pointer to the plugin's hardware test routine

 .word HardwareSetup ; pointer to the plugin's hardware setup routine

(called every reset)

 .word Defaults ; pointer to default settings initialisation

 .word Keyboard ; pointer to keyboard input handler

 .word ListUpdate ; pointer to list callback

 .word LoadCfg

 .word SaveCfg

 .byte 0 ; reserved byte

 .byte 'Device Control',0 ; title of plugin menu

 .align PlugInMenuAddress

PluginMenu

In this example, the menu initialisation code is at Init, and the code at that address will be run before the
menus are first displayed and before menus are drawn when moving from one menu to the next. Since
menu items are stored in ROM, it’s not possible to alter flags inside of menu item definitions. Instead, we
call pSetItemFlags with the address of the menu item we want to change in the X and Y registers (X = LSB,
Y = MSB), flags in the upper nibble (bits 4-7) of the accumulator, and the number of consecutive items to
process, minus 1, in the lower nibble of the accumulator.

Bit usage in the accumulator is as follows:

The Selected attribute is for internal use and should never be explicitly set. Item state is normally zero,
but may be explicitly set to the following values:

7 6 5 4 3 2 1 0

Attribute flags

Number of items, less 1
Internal

Selection bit
Item State

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

30

By default, every time a menu is about to be drawn on the screen, the attributes of all of its menu items
are set to 0x00 (active). However, since the menu initialisation function is called immediately before the
menu is actually rendered, we get the opportunity to customise menu item states before the menu is
actually drawn.

To set the attribute of a single menu item, we need simply load the address into XY and the desired
attribute into A. But if we wish to process several contiguous items at once (for example, if we want to
deactivate a group of menu items when the user switches off a particular setting on which all the target
items depend), we add NumItems-1 to the attribute value in A. Obviously this means that a maximum of
sixteen items can be affected via a single call to pSetItemFlags, but this isn’t really a problem since no
single menu may contain more than fourteen items.

To help, the plugin equate file defines enumerated variables for menu item attributes:

.enum ItemState

 Active = 0x00

 Default = 0x10

 Dimmed = 0x40

 Disabled = 0x50

 Enabled = 0x60

 NotPresent = 0x70

.ende

You need simply load one of these values into A and (optionally) add to it the number of items to be
processed, less 1.

For example, the System Information menu consists of a series of items, all greyed out and inactive (since
their purpose is simply to present information). The BIOS’s menu initialisation routine accomplishes this
via the following code:

 ldxy #Item24 ; first menu item in group

 lda #ItemState.Dimmed + 7 ; 0x40 + number of items less 1, so eight items

 jsr SetItemFlags ; set the attributes

Similarly, when the user activates or deactivates the PBI BIOS, several items which follow become
activated or deactivated. Here is the code which handles it:

.proc TestPBIOnOff

 ldxy #Item14 ; if PBI is off, grey out everything else

 lda ConfigBuf[0].Aux2

 and #$04

 bne PBIisON

Bit 6 5 4 Value Effect

0 0 0 0x00 Item is displayed with current setting and in an active state

0 0 1 0x10 Item is dimmed and displayed as “Default”

0 1 0 0x20 Reserved

0 1 1 0x30 Reserved

1 0 0 0x40 Item is dimmed and inactive but current value is displayed

1 0 1 0x50 Item is dimmed and displayed as “Disabled”

1 1 0 0x60 Item is dimmed and displayed as “Enabled”

1 1 1 0x70 Item is dimmed and displayed as “Not Present”

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

31

.ifdef Incognito

 ldxy #XLMenuData.ItemBASIC

.else

 ldxy #ItemBASIC

.endif

 lda #ItemState.Default ; disable BASIC state if PBI is off

 jsr SetItemFlags

.ifdef Incognito

 ldxy #ItemZHnd

 lda #ItemState.Disabled

 jsr SetItemFlags

.endif

 ldxy #ItemSIO

 lda #ItemState.Disabled ; disable HSIO if PBI is off

 jsr SetItemFlags

 ldxy #Item14

 lda #ItemState.Disabled + 2 ; disable first three options of PBI BIOS menu if PBI

is off

 bne @+

PBIisON ; if PBI is on, activate device ID and main HiSIO

 lda #ItemState.Active + 2 ; 3 items

 jsr SetItemFlags

 ldxy #ItemSIO

 lda #ItemState.Active

@

 jsr SetItemFlags ; turn on HiSIO

 jsr TestHDDOnOff

 jsr TestHiSIOOnOff ; set up HiSIO items for drives 1-4 ldxy #ItemZHand

 jmp TestIOSound

.endp

When the PBI BIOS is disabled, several items on the same menu and all the items on the ‘SIO and CIO
Drivers’ menu are greyed out and marked ‘Disabled’, regardless of their actual settings. This allows the
current settings to reappear when the PBI BIOS is enabled again, since they never actually changed (only
the PBI selection bit changed).

Here’s a portion of the menu initialisation code from the default plugin:

.proc Init

 jsr UpdateMenu

.ifdef Stereo

 ldxy #SysInfoStereo

 jsr Deactivate

 bit StereoPokeyFlag ; prepare menu before it's displayed

 bmi @+

 lda StereoPokeyFlag ; if we can't control stereo, make option reflect fixed

status

 and #$01

 sta StereoPokey

 ldxy #StereoSelect

 jsr Deactivate

@

.endif

.if [.def SIDE2] .or [.def XEL]

.ifndef Incognito

 ldxy #ItemZHand

 lda ConfigBuf[0].Aux2

 and #$04

 bne ZHandOn

 lda #ItemState.Disabled

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

32

 .byte $2c

ZHandOn

 lda #ItemState.Active

@

 jsr pSetItemFlags

.endif

.endif

 rts

.endp

//

// Deactivate 1 menu item at XY

//

.proc Deactivate

 lda #ItemState.Dimmed

 jmp pSetItemFlags

.endp

Updating Menus

Aside from specifying which menu items are enabled or disabled prior to the menus being drawn, we may
also need to respond to changes to settings made by the user while the menu is open. We handle this via
code pointed to by the Update vector. In this case, we are passed the current menu number in the A
register, and the address of the current menu item in the XY register pair. We can therefore check XY to
see if the user’s selection changes something which requires other items on the same menu to
immediately change their value or state. When changing an item’s value, we should set the carry flag if
changes require a redraw of the complete menu (this will be needed if we explicitly changed the state of
another menu item). If we exit with the carry flag clear, nothing else on the menu will be redrawn, even if
we changed the state of other items.

If our update routine changes a menu item’s state, on the other hand (if it deactivates an item or sets it
to ‘Disabled’, etc, by calling pSetItemFlags), we don’t need to worry about the state of the carry flag,
since pSetItemFlags implicitly causes a complete menu redraw.

Here is the code which handles the dynamic dimming and activation of SIDE2-related menu items:

.proc UpdateMenu

.ifdef SIDE2

.ifndef Incognito

 ldxy #ItemZHand

 lda ConfigBuf[0].Aux2

 and #$04

 bne @+

 lda #ItemState.Disabled

 jsr pSetItemFlags

@

 ldxy #ItemButton

 lda ConfigBuf[0].Aux2

 and #$04

 beq HDDOff

 bit ConfigBuf[0].Aux3

 bmi HDDIsOn

HDDOff

 lda #ItemState.Disabled

 jsr pSetItemFlags

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

33

 lda #ItemState.Default

 bne SetSIDEROM

HDDIsOn

 lda #ItemState.Active

 jsr pSetItemFlags

 lda ConfigBuf[0].Aux2

 and #$08

 beq Done

 lda #ItemState.Disabled

SetSIDEROM

 ldxy #ItemSIDEROM

 jsr pSetItemFlags

Done

.endif

.endif

 rts

.endp

Here, we are first checking that the PBI BIOS is enabled (by testing bit 2 of ConfigBuf[0].Aux2), and setting
the state of ‘ItemZHand’ accordingly. We then set the state of ‘ItemButton’ in a similar fashion, but also
testing for the current state of the PBI HDD (bit 7 of ConfigBuf[0].Aux3).

As a second example, we will disable the HDD boot drive if the HDD itself is disabled.

.proc TestBootDrive ; If Boot drive is disabled, grey out D1: redirect

 ldxy #ItemD1Swap

 lda ConfigBuf[0].Aux3

 and #$1f

 cmp #$10

 bcs Off

 cmp #2

 bcs On

Off

 lda #ItemState.Disabled

 .byte $2c

On

 lda #ItemState.Active

@

 jmp SetItemFlags

.endp

Note that as well as calling these dynamic functions in response to changes to menu settings, they should
also be called by the menu initialisation routine so that the state of the menu item reflects the proper
context.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

34

Displaying Messages and Interacting with the User

So far we’ve talked solely about managing menus, but there are two final forms of user interaction
possible via plugins: status line messages and confirmation dialogs.

Displaying a Message

To display a message on the status line, use the following code:

 jsr pMessage

 .byte 'My message',0

The message will auto-clear after 2-3 seconds, being replaced by the standard context-sensitive help text.
See the earlier section concerning formatted printing for information on how to include numbers and
other information in your string.

Obtaining a Response from the User

It’s possible to display ‘Buttons’ in the status line which the user can select via the cursor keys and the
Return/Esc keys or via the joystick. To display buttons and allow the user to choose one, you should load
the accumulator with the button mask, the X register with the default button, and JSR to pConfirm. A
prompt string (null-terminated) should immediately follow the call to pConfirm; this string will be
displayed to the left of the buttons and a question mark will be automatically appended to it. Upon
return, the accumulator will hold the sequential value of the button chosen by the user (starting at 0),
and correspondingly the Z flag will be set if the user chose the first button in the selection. Meanwhile, if
the user cancelled selection by pressing the Escape key, the Z flag will be zero and the N flag will be set.

The button masks are enumerated as follows:

.enum cmdButton

 OK = 1

 Yes = 2

 No = 4

 Cancel = 8

.ende

Numbers are assigned to buttons in accordance with their enumerated bit order, so if only ‘Yes’ and ‘No’
buttons are displayed, ‘Yes’ will always return 0 and ‘No’ will return 1.

For example, to present ‘Yes’, ‘No’ and ‘Cancel’ buttons with the default action being ‘Yes’, and then act
on the response:

 lda #cmdButton.Yes + cmdButton.No + cmdButton.Cancel

 ldx #0

 jsr pConfirm

 .byte 'Save Changes',0

bne Abort

 jsr SaveSettings

Abort

 rts

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

35

In the above example, selection of the ‘Yes’ button will return 0 in the accumulator, ‘No’ will return 1 and
‘Cancel’ will return 2. After the Abort label, one may test for N=1 and branch accordingly, or check
whether the value in the accumulator is 1 (No) or 2 (Cancel).

This is how the buttons look on the screen:

A second example:

 lda #cmdButton.OK + cmdButton.Cancel

 ldx #1

 jsr pConfirm

 .byte ‘Restore defaults’,0

In this example, ‘OK’ and ‘Cancel’ buttons are displayed, and the default action (and the default
highlighted button) is ‘Cancel’ (since X = 1). Upon return, the accumulator will contain 0 if the ‘OK’ button
was selected, 1 if the ‘Cancel’ button was selected, and the N flag will equal 1 if the user pressed Escape.
The buttons will look like this:

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

36

Testing Conditions and Probing Hardware

So how do we know – for example – whether stereo audio is under the control of the U1MB? The BIOS
calls the plugin’s hardware test early on (before the menus are even open), and it’s here that the plugin
can probe hardware and – for example – establish whether the M0 pin of the U1MB P2 header is
connected to the Stereo Pokey’s on/off switch.

//

// Test Stereo Pokey control

//

.proc HardwareTest

 lsr StereoControlFlag

 mva #0 UltimateAux ; attempt to disable stereo

 jsr DetectStereoPokey ; probe hardware for second POKEY; returns Z=1 if present

 beq @+

NotActive ; if it's still enabled, it's present but not controlled by

M0

 rts

@

 mva #0x01 UltimateAux ; try to enable stereo

 jsr DetectStereoPokey ; test it again

 beq NotActive ; if there's still no stereo, there's none present

 sec

 ror StereoControlFlag ; otherwise set flag saying stereo control works

 rts

.endp

Here we use bit 7 of an internal variable (StereoControlFlag) to denote whether stereo hardware is under
software control. We first clear bit 7 of the flag, then store 0 in UltimateAux and call our stereo Pokey
test. If stereo hardware is under the control of M0, we should find no stereo hardware (our test returns
Z=1 if no stereo hardware is found). If we do detect stereo hardware when M0=0, we can deduce that
stereo hardware is present but not switchable in software. If we find no stereo hardware regardless of
the value of M0, then we conclude there’s no stereo hardware present at all.

We can use this information to decide how to display menu items. For instance, if there’s no stereo
POKEY regardless of the state of M0, we should deactivate any settings pertaining to stereo audio and set
their state to ‘Disabled’. If stereo is present regardless of the state of M0, we should deactivate any
stereo settings, but might set their state to ‘Enabled’.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

37

Writing to Hardware Registers

While most plugin code seeks to control hardware via the Aux signals of the U1MB’s P2 header (which is
transparently handled by the BIOS itself), there may be occasions when it’s necessary to control
hardware via internally mapped registers on every system reset (and every time the user exist the BIOS
setup menu). A hook is provided for precisely this purpose: the pointer to the hardware setup routine.

The hardware setup routine vector should point to code you want to execute every system reset and
every time the user leaves the BIOS setup utility. Depending on how the user has configured the
hardware supported by the plugin, hardware registers in the IO region may be updated accordingly. Care
must be exercised, however, if the target hardware registers occupy the same address space as the
Ultimate 1MB IO RAM. The plugin will then need to toggle IO RAM in the 0xD1xx and 0xD600-D7FF
address space. IO RAM is controlled via bit 6 of 0xD380, with 1 enabling RAM and 0 disabling it (and
exposing any hardware registers in the same address space).

Note that the IORAM region at 0xD500-D5BF cannot be disabled while the configuration is unlocked, i.e.
while the BIOS setup menu is open. Therefore, special provision has been made for writes to the
underlying CCTL area (see the example later in the text).

As an example, let’s copy an internal flag to a register at 0xD600:

 lda Plugin1

 ldy #0

 sty UltimateConfig

 sta 0xD600

 ldy #0x40

 sty UltimateConfig

The HardwareSetup routine will be run on system Reset and every time the BIOS setup utility is exited.

The 1088 XEL BIOS plugin uses the hardware write hook to initialise the Sophia VGate function, as well as
to force ATR button sensing off.

//

// Setup hardware on reset

//

 .proc HardwareSetup

 lda ConfigBuf[0].Aux2 ; make sure the ATR button is disabled

 and #0xFF-08

 sta ConfigBuf[0].Aux2

 mva #SophiaUnlock SophiaControl

 ldx Device3

 lda VGateTable,x

 sta SophiaControl

 rts

VGateTable

 .byte VGateOff,VGateOn

 .endp

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

38

CCTL Write Example

Finally, to illustrate the chosen method of overcoming the fact that IORAM at 0xD500-D5BF cannot be

disabled while the U1MB configuration is unlocked, we will look at some example code from the plugin

function originally suggested and coded by Marcin Sochacki, which sets AtariMax flash cartridges to bank

0 on every system reset.

Here’s the hardware setup routine from Marcin’s plugin:

//

// Setup hardware on reset

//

 .proc HardwareSetup

 lda CartResetFlag ; check state of cart reset flag

 beq Off

 ldx #.len[PatchCode]-1 ; it's set, so copy patch code to stack (must not

exceed 16 bytes)

@

 lda PatchCode,x

 sta PluginPatch,x

 dex

 bpl @-

 rts

Off

 lda #$60 ; if cart reset is off, we must place an RTS at the patch address

 sta PluginPatch ; since the plugin can't reference the current flag setting

in IORAM

 rts

 .endp

 .proc PatchCode

 lda #0

 sta $D500

 rts

 .endp

The hardware setup code is executed just before the operating system is initialised, following a power-
on, forced reboot or warm system reset. CartResetFlag is equal to 0 or 1 and is initialised by a menu
setting which is part of the plugin. Here, we check the state of the flag and branch accordingly, copying
patch code to PluginPatch or simply writing an RTS instruction if the cartridge bank reset feature is
disabled. The Patch code will be executed immediately after the U1MB configuration is locked, but before
the operating system is initialised.

It’s vitally important that the patch is no more than sixteen bytes in length, and that an RTS instruction is
written to PluginPatch if the patch functionality is to be disabled.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

39

Reacting to Keyboard Input

The plugin’s keyboard callback will be passed (in the A register) every keystroke issued to the system. It is
therefore trivial to react to a user keystroke:

.proc Keyboard

.ifdef SIDE3

 cmp #Key.R

 beq RemoveEmuCart

.endif

 rts

.endp

Bounds-Limiting a List Control

If you wish to make items in a list control un-selectable on a dynamic basis, the ‘UpdateList’ callback will
accomplish this. The function is called on the opening of any list control, with the address of the control
passed in XY. Simply check whether XY points to the control of interest, and pass the index of the lowest
permissible list item in X and the highest + 1 in Y to the ‘pSetBounds’ function.

Example:

; Callback to handle contextual changes to lists

.proc ListUpdate

.ifdef PokeyMAX

 cpxy #ItemPokey

 bne Done

 lda PokeyMAXFeatures

 and #2 ; do we have quad pokey?

 bne Done ; if so, do nothing, since all list items are valid

 ldx #0

 ldy #2

 jsr pSetBounds

Done

.endif

 rts

.endp

Saving and Loading Configuration Data

A plugin may transfer configuration data to and from a device other than the U1MB or Incognito NVRAM
by hooking into the firmware configuration load/save configuration functions. The Sophia 2 plugin does
this by registering callbacks to the Configuration Load and Configuration Save plugin vectors, thereby
storing and retrieving Sophia configuration data to and from the Sophia’s EPROM memory, bypassing the
U1MB/Incognito NVRAM entirely. Note that this means that only one set of Sophia settings exists,
regardless of the currently selected firmware profile. However, if a third-party device has sufficient
NVRAM or EPROM storage, there is no reason that a plugin could not maintain multiple configuration
profiles on said device’s memory.

.proc LoadCfg

.ifdef Sophia2

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

40

 bit SophiaDetectFlag

 bmi @+

 sec

 ror SophiaDetectFlag

 jsr DetectSophia

@

 lda SophiaFlag

 beq NoSophia

 jsr WaitSync

 ldy #SPECEN

 sty SGRACTL

 lda SPRIOR

 sta SophiaCfg1

 sta OldSophiaCfg1

 lda SGRACTL

 and #$7E

 sta SophiaCfg2

 sta oldSophiaCfg2

 sta SGRACTL

 jmp @+

NoSophia

 lda #0

 sta SophiaCfg1

 sta SophiaCfg2

@

 jsr RestoreGTIA

.endif

 rts

.endp

.proc SaveCfg

.ifdef Sophia2

 lda SophiaFlag

 beq NoSophia

 jsr WaitSync

 lda #SPECEN

 sta SGRACTL

 lda SophiaCfg1

 sta SPRIOR

 lda SophiaCfg2

 and #$7E

 tax

 lda #SPECEN+NVEN

 sta wsync

 sta SGRACTL

 stx SGRACTL

 jsr RestoreGTIA

NoSophia

.endif

 rts

.endp

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

41

.ifdef Sophia2

.proc RestoreGTIA

 ldy #0

 sty GRACTL

 iny

 sty PRIOR

 rts

.endp

.endif

Identifying Your Plugin

If you modify one of the existing plugins or decide to write your own, please be sure to populate the
metadata area appropriately in order that your module can be easily differentiated from other plugins.
You can use a string of up to fifteen character (plus null-termination) which mnemonically describes what
the plugin does.

It’s also useful to maintain major and minor version numbers, as well as revision dates. Be aware also
that UFLASH – as a safety precaution – will not flash a plugin to the firmware plugin slot if the version
number in the BIOS revision field of the plugin is higher than that of the active BIOS. In this way, we at
least ensure that the BIOS should always support the functionality of the plugin being flashed.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

42

PBI BIOS Extensions

As well as main BIOS plugins, the firmware provides one other method of extensibility in the form of PBI
BIOS Extensions. Three vectors near the top of page 0xD1 allow new RAM-based code to be ‘hooked’ into
the existing firmware. The full list of public variables and vectors in this area is shown below.

Address Label Size (bytes) Purpose

0xD1AF FixedBufFlag 1 Bit 7: 1 = Transfer uses internal sector buffer

0xD1B0 ATRCmd 1 Holds ATA command number

0xD1B1 SlaveFlag 1 Bit 4: 1 = Transfer on secondary IDE device

0xD1B2 slenmsb 1 MSB of logical block size (0, 1 or 2)

0xD1B3 rwcmd 1 Internal ATA command number

0xD1B4 CheckSum 2 Checksum (for driver integrity)

0xD1B6 ATRVect 3 24-bit address of ATR IO handler

0xD1B9 RWVect 3 24-bit address of internal sector I/O handler

0xD1BC SIOVect 2 16-bit address of PBI SIO handler

0xD1BE Reserved 1 Reserved for future use

The vectors (ATRVect, RWVect and SIOVect) allow the corresponding driver segments to be completely
replaced with user-written handlers. SIOVect allows replacing of virtually the entirety of the PBI BIOS with
entirely new code (which would first have to be installed in RAM).

Since creating PBI BIOS Extensions is a rather complex proposition, source code for the only existing
extension (‘Rapidisk’) is provided for the reader’s perusal. The Rapidisk extension (loaded via DOS or the
XEX loader) replaces the sector transfer code (pointed to by RWVect) in ROM with RAM-based code on
65C816-equipped Ataris. The new IO code – since it runs from fast linear RAM – allows significantly
improved IO performance on Rapidus machines, and allows for the direct transfer of sectors in and out of
linear RAM beyond segment 0.

While it is beyond the scope of this reference to fully document the intricacies of developing an extension
in 65C816 assembly language, it is hoped that the provided source code at least provides an illustrative
example which interested developers may freely adapt to suit their requirements.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

43

Testing Plugins

Although it’s perfectly possible to develop plugins in situ on the Atari, since plugins can completely hang
the system and render it unbootable if they contain bugs, it’s strongly advised that they are developed
and tested using cross-assembly and emulation. UFLASH is fully functional under the Altirra emulator and
one may test plugins in a non-critical environment before saving the firmware once it’s been established
that things work correctly. While this is not a 100 per cent guarantee of identical functionality on real
hardware, it is generally a very strong indicator, owing to the extreme accuracy of Altirra’s emulation.
Even if proprietary third-party hardware behaviour is unpredictable or unemulated, one may fully
establish the reliability of plugin menu items using emulation, and at least be sure that the same plugin
flashed to actual hardware will not prevent the machine from booting. And if the machine is able to boot,
the plugin can be re-flashed once changes have been made.

I accept no liability for machines rendered inoperable owing to misadventures in plugin development,
however, even if caused by errors or omissions in this documentation. Although the flashing of official
BIOS updates by means of UFLASH has become almost free of risk, I cannot be held responsible for
problems caused by plugin development, and I would strongly advise the purchase of a suitable USB flash
ROM programmer by anyone considering plugin development. The inexpensive MiniPro TL866 is ideal for
this purpose.

Should you discover any bugs or issues with regard to plugin development, I would nevertheless be
interested to hear about them, and I welcome suggestions pertaining to improvements in the API. If you
want to accomplish something via an Ultimate 1MB BIOS plugin which is not possible via the current
framework, I will consider making the changes necessary to allow it.

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

44

Acknowledgements

The author would like to thank the following:

• Matthias Reichl (Hias) for permission to adapt his High-Speed SIO code for use in the new PBI
BIOS, for his invaluable technical insight, and for his help with debugging and troubleshooting

• Avery Lee (Phaeron) for the peerless Altirra emulator, for the indispensable Altirra Hardware
Reference Manual and for his detailed technical insights

• Kuba Skrzypnik for enthusiastic testing and user feedback

• Paul Fisher (Mr Fish) for his suggestions regarding user interface design

• Sebastian Bartkowicz (Candle O’Sin) for Ultimate 1MB and Incognito hardware and for providing
me with the opportunity to write the original PBI BIOS for both devices

• Lotharek for providing further Ultimate 1MB boards

• Marius Diepenhorst (ProWizard) for his unswerving devotion to testing the original betas of the
alt-BIOS, sometimes spending whole consecutive evenings testing new builds and then reporting
bugs and suggesting new features

• Marcin Sochacki (TheMontezuma) for SIO2BT hardware and documentation, for help with
SIO2BT support, and for his interest in and suggestions for plugins

• Michael St. Pierre (mytek) for his support, donations (material and financial), and for placing the
alt-BIOS powered U1MB at the heart of his 1088XEL motherboard project

• Jürgen van Radecke (tf_hh) for his technical expertise

• Every member of the 1088XEL beta testing team for their invaluable feedback and bug reports

• Eric Bacher (ebigiuy) for his wonderful OSS ROM patches

Last but not least, I must thank everyone on the AtariAge and AtariArea forums who took the time to
download and test the new firmware, report issues and make suggestions – among them DrVenkman,
Kyle22, rdea6, Stephen, and Voy, to name but a few.

Jonathan Halliday

June 2021

https://www.facebook.com/j.skrzyp

Ultimate 1MB/Incognito/1088XEL|U1MB BIOS Technical and Developer Documentation

45

References

Altirra Hardware Reference Manual by Avery Lee

Altirra Atari 8-bit emulator by Avery Lee

High Speed SIO Patch by Matthias Reichl

SIO2BT by Marcin Sochacki

Atari 1088XEL Mini-ATX Motherboard by Michael St Pierre

The SpartaDOS X Upgrade Project

Lotharek (Ultimate 1MB, SIDE2)

Candle (Ultimate 1MB, Incognito, SIDE2)

http://www.virtualdub.org/downloads/Altirra%20Hardware%20Reference%20Manual.pdf
http://www.virtualdub.org/altirra.html
http://www.horus.com/~hias/atari/#hipatch
http://abbuc.de/~montezuma/
https://ataribits.weebly.com/1088xel.html
http://sdx.atari8.info/index.php
https://www.lotharek.pl/
http://spiflash.org/

